<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 數(shù)據(jù)挖掘工程師崗位的基本職責(zé)-崗位職責(zé)

    時(shí)間:2022-08-25 00:56:43 崗位職責(zé) 我要投稿
    • 相關(guān)推薦

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)

      現(xiàn)如今,我們可以接觸到崗位職責(zé)的地方越來(lái)越多,崗位職責(zé)具有提高內(nèi)部競(jìng)爭(zhēng)活力,更好地發(fā)現(xiàn)和使用人才的作用。那么崗位職責(zé)怎么制定才能發(fā)揮它最大的作用呢?下面是小編收集整理的數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé),供大家參考借鑒,希望可以幫助到有需要的朋友。

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)1

      職責(zé):

      1.參與金融大數(shù)據(jù)平臺(tái)系統(tǒng)和算法的研發(fā)和優(yōu)化;

      2.基于大數(shù)據(jù)金融場(chǎng)景,進(jìn)行信用風(fēng)險(xiǎn)模型,風(fēng)控模型,營(yíng)銷(xiāo)模型的創(chuàng)新設(shè)計(jì);

      3.與業(yè)務(wù)部門(mén)溝通合作,將數(shù)據(jù)模型應(yīng)用于實(shí)際業(yè)務(wù)。

      任職要求:

      1.計(jì)算機(jī)相關(guān)專(zhuān)業(yè)碩士及以上學(xué)歷,至少7年以上相關(guān)工作經(jīng)驗(yàn);;

      2.具有良好的商業(yè)敏感度和優(yōu)秀的數(shù)據(jù)分析技能,能夠開(kāi)發(fā)創(chuàng)新而實(shí)際的分析方法以解決復(fù)雜的商業(yè)問(wèn)題。

      3.熟悉機(jī)器學(xué)習(xí)的一般模型;例如分類(lèi).聚類(lèi).預(yù)測(cè),理解一些常用的特征選擇和矩陣分解算法。

      4.熟悉深度神經(jīng)網(wǎng)絡(luò)和常用模型(如CNN,DBN,sparseconding,RNN等),有Caffe或Theano或ConvNet的實(shí)踐經(jīng)驗(yàn)。

      5.在語(yǔ)義理解檢索(如知識(shí)圖譜表示.結(jié)構(gòu)化預(yù)測(cè).語(yǔ)義解析.信息檢索.知識(shí)挖掘等)有過(guò)深入的工作與研究。

      6.較強(qiáng)的自學(xué)能力.優(yōu)秀的邏輯思維能力和良好的溝通表達(dá)能力和敬業(yè)精神。

      7.具備良好的系統(tǒng)分析能力,良好的.抽象思維和邏輯思維能力,獨(dú)立分析問(wèn)題解決問(wèn)題的能力;

      8.可承受較大壓力,有責(zé)任感,較強(qiáng)的溝通協(xié)調(diào)能力,具有團(tuán)隊(duì)合作精神;

      9.有互聯(lián)網(wǎng)公司.大型金融企業(yè)和大型IT企業(yè)工作經(jīng)歷的優(yōu)先。

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)2

      職責(zé):

      深入研究業(yè)內(nèi)領(lǐng)先的技術(shù)思路,輸出具有創(chuàng)新價(jià)值的預(yù)研項(xiàng)目可行性分析報(bào)告以及相關(guān)實(shí)驗(yàn)數(shù)據(jù);

      負(fù)責(zé)產(chǎn)品、銷(xiāo)售、供應(yīng)鏈、電商等公司數(shù)據(jù)的海量挖掘,并建立和優(yōu)化用戶(hù)標(biāo)簽、特征模型、產(chǎn)品精準(zhǔn)匹配、異常預(yù)警等;

      負(fù)責(zé)大數(shù)據(jù)下傳統(tǒng)機(jī)器學(xué)習(xí)算法的并行化實(shí)現(xiàn)及應(yīng)用,并提出改進(jìn)方法和思路;

      參與公司大數(shù)據(jù)架構(gòu),負(fù)責(zé)BI實(shí)施中的數(shù)據(jù)挖掘模塊算法研究、模型建立和優(yōu)化,幫助實(shí)現(xiàn)數(shù)據(jù)挖掘和分析平臺(tái)的建設(shè);

      負(fù)責(zé)相關(guān)數(shù)據(jù)挖掘項(xiàng)目的需求收集、項(xiàng)目建立、項(xiàng)目設(shè)計(jì)開(kāi)發(fā)和結(jié)果輸出質(zhì)量把控,通過(guò)數(shù)據(jù)挖掘結(jié)果驅(qū)動(dòng)業(yè)務(wù)執(zhí)行;

      配合技術(shù)進(jìn)行數(shù)據(jù)挖掘模型開(kāi)發(fā)和模型封裝,例如決策規(guī)則模型、預(yù)警模型、流失模型、效果標(biāo)桿模型、客戶(hù)生命周期管理模型等;

      任職要求:

      大學(xué)本科及以上學(xué)歷,統(tǒng)計(jì)學(xué)、計(jì)算機(jī)、信息技術(shù)、數(shù)學(xué)相關(guān)專(zhuān)業(yè);

      兩年以上數(shù)據(jù)建模經(jīng)驗(yàn);

      數(shù)據(jù)主流數(shù)據(jù)庫(kù),mysql、oracle、DB2等傳統(tǒng)結(jié)構(gòu)化數(shù)據(jù)倉(cāng)庫(kù),熟悉HBase、MongoDB等非結(jié)構(gòu)化數(shù)據(jù)庫(kù);

      熟悉常用的`聚類(lèi)、分類(lèi)、回歸、關(guān)聯(lián)、時(shí)間序列等監(jiān)督式和非監(jiān)督式學(xué)習(xí)算法;

      熟悉R、Python、MLlib等數(shù)據(jù)挖掘工具中至少一種。

      熟悉spark、storm等大數(shù)據(jù)計(jì)算框架者優(yōu)先。

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)3

      職責(zé):

      1、對(duì)通信和金融業(yè)務(wù)數(shù)據(jù)進(jìn)行分析和挖掘,滿(mǎn)足研發(fā)和運(yùn)營(yíng)等部門(mén)的業(yè)務(wù)需求和決策需求;

      2、能根據(jù)業(yè)務(wù)特點(diǎn)選擇最合適的'數(shù)據(jù)挖掘算法,并做調(diào)優(yōu);

      3、支持?jǐn)?shù)據(jù)分析、挖掘算法平臺(tái)的部署和日常運(yùn)營(yíng);

      4、撰寫(xiě)分析類(lèi)報(bào)告。

      任職資格:

      1、大學(xué)本科或本科以上統(tǒng)計(jì)學(xué)、數(shù)學(xué)或其他相關(guān)專(zhuān)業(yè),對(duì)數(shù)據(jù)結(jié)構(gòu)熟悉;

      2、熟練使用python進(jìn)行數(shù)據(jù)分析、處理、可視化。熟悉numpy/pandas/matplotlib等常用模塊。熟練使用sql,最好用過(guò)hive-sql或spark-sql;

      3、對(duì)hadoop/spark有一定了解。能夠簡(jiǎn)單使用hadoop系列命令;

      4、對(duì)線性回歸,決策森林,xgboost,評(píng)分卡等數(shù)據(jù)挖掘相關(guān)算法有一定了解;

      5、做過(guò)web接口調(diào)試,熟悉json者優(yōu)先;

      6、熟練掌握PPT和EXCEL制作;

      7、具備良好的學(xué)習(xí)、溝通與表達(dá)能力,具有較強(qiáng)的團(tuán)隊(duì)合作精神,對(duì)工作富有熱情,能承受工作壓力;

      8、有運(yùn)營(yíng)商或金融類(lèi)相關(guān)數(shù)據(jù)經(jīng)驗(yàn)工作優(yōu)先考慮;

      9、能適應(yīng)中長(zhǎng)期現(xiàn)場(chǎng)出差。

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)4

      職責(zé)

      1、負(fù)責(zé)構(gòu)建公司數(shù)據(jù)分析與數(shù)據(jù)挖掘業(yè)務(wù)分析體系,整體架構(gòu)設(shè)計(jì)、規(guī)劃,充分發(fā)揮數(shù)據(jù)的價(jià)值,提高數(shù)據(jù)質(zhì)量,促進(jìn)公司業(yè)務(wù)更好的發(fā)展;

      2、通過(guò)建立業(yè)務(wù)的數(shù)據(jù)分析模型來(lái)指導(dǎo)業(yè)務(wù)的發(fā)展,對(duì)數(shù)據(jù)庫(kù)信息進(jìn)行深度挖掘和有效利用,充分實(shí)現(xiàn)數(shù)據(jù)的商業(yè)價(jià)值,構(gòu)建公司核心競(jìng)爭(zhēng)力;

      3、跟蹤并分析用戶(hù)行為,為公司廣告業(yè)務(wù)的.發(fā)展及產(chǎn)品的設(shè)計(jì)進(jìn)行海量數(shù)據(jù)支持;

      4、負(fù)責(zé)數(shù)據(jù)管理中心團(tuán)隊(duì)的建設(shè)、發(fā)展、激勵(lì)、培訓(xùn)等管理工作,有效領(lǐng)導(dǎo)數(shù)據(jù)分析與挖掘團(tuán)隊(duì)支持和推動(dòng)業(yè)務(wù)發(fā)展。

      任職要求:

      1、熱愛(ài)數(shù)據(jù),對(duì)數(shù)據(jù)及邏輯關(guān)系敏感,并對(duì)數(shù)據(jù)體系有深入的認(rèn)識(shí);

      2、本科以上學(xué)歷、計(jì)算機(jī)/統(tǒng)計(jì)學(xué)/經(jīng)濟(jì)學(xué)等相關(guān)專(zhuān)業(yè),有一定工作經(jīng)驗(yàn),;

      3、具備數(shù)據(jù)建模(機(jī)器學(xué)習(xí),數(shù)據(jù)挖掘,信息檢索背景)和分析理論知識(shí)和經(jīng)驗(yàn);

      4、熟悉Linux平臺(tái)的海量數(shù)據(jù)分布式存儲(chǔ)、分布式計(jì)算;

      5、熟悉常用的數(shù)據(jù)分析工具,有基于Hadoop的云計(jì)算平臺(tái),HBase及類(lèi)似的NoSQL存儲(chǔ), MySQL,和BI系統(tǒng)等實(shí)踐經(jīng)驗(yàn);

      6、熟悉互聯(lián)網(wǎng)并且對(duì)于互聯(lián)網(wǎng)常見(jiàn)的業(yè)務(wù)形態(tài)與商業(yè)模式有深入的理解,對(duì)業(yè)務(wù)變化有敏銳的洞察力;

      7、有較強(qiáng)的對(duì)業(yè)務(wù)理解與分析能力,了解業(yè)務(wù)規(guī)劃與策劃能力以及相應(yīng)經(jīng)驗(yàn);

      8、具備較強(qiáng)的問(wèn)題定位、分解、解決能力及計(jì)劃和組織能力;

      9、善于創(chuàng)新、思維敏捷、精力充沛,溝通能力強(qiáng),能夠承受較大工作壓力;

      10、有電子商務(wù)或互聯(lián)網(wǎng)數(shù)據(jù)倉(cāng)庫(kù)或商業(yè)智能架構(gòu)設(shè)計(jì)、開(kāi)發(fā)實(shí)施經(jīng)驗(yàn)者優(yōu)先。

    數(shù)據(jù)挖掘工程師崗位的基本職責(zé)精選-崗位職責(zé)5

      職責(zé):

      業(yè)務(wù)數(shù)據(jù)的收集整理和分析;

      負(fù)責(zé)公安、交通領(lǐng)域的業(yè)務(wù)建模和算法設(shè)計(jì);

      分析項(xiàng)目數(shù)據(jù)需求,完成系統(tǒng)中數(shù)據(jù)分析模塊的設(shè)計(jì)、實(shí)現(xiàn)和測(cè)試;

      設(shè)計(jì)、構(gòu)建和優(yōu)化基于大數(shù)據(jù)的'存儲(chǔ)平臺(tái)架構(gòu),編寫(xiě)相關(guān)技術(shù)文檔;

      設(shè)計(jì)并實(shí)現(xiàn)基于開(kāi)源項(xiàng)目(Cobar,Spark等)的海量數(shù)據(jù)集成與處理平臺(tái);

      為其他部門(mén)提供數(shù)據(jù)分析支撐。

      任職資格:

      計(jì)算機(jī)相關(guān)專(zhuān)業(yè);

      熟悉數(shù)據(jù)挖掘算法,對(duì)分類(lèi)、聚類(lèi)、時(shí)序、圖等算法有很深了解;

      熟練掌握Hadoop、Spark生態(tài)系統(tǒng)組件(MR、HBase、Hive、ZooKeeper、Spark SQL、Spark Mlib等),有相關(guān)大數(shù)據(jù)架構(gòu),開(kāi)發(fā)成功案例;

      熟練的使用、開(kāi)發(fā)ETL工具經(jīng)驗(yàn),有數(shù)據(jù)庫(kù)建模ER建模經(jīng)驗(yàn)優(yōu)先;

      有海量數(shù)據(jù)BI或數(shù)據(jù)挖掘項(xiàng)目實(shí)施和管理經(jīng)驗(yàn),對(duì)數(shù)據(jù)挖掘理論方法有一定了解者優(yōu)先;

      熟悉的Bash Shell和Python等腳本編程能力;

      強(qiáng)烈的責(zé)任心和工作熱情,良好的團(tuán)隊(duì)合作精神。

    【數(shù)據(jù)挖掘工程師崗位的基本職責(zé)-崗位職責(zé)】相關(guān)文章:

    數(shù)據(jù)挖掘工程師崗位職責(zé)06-04

    數(shù)據(jù)挖掘崗位職責(zé)05-14

    數(shù)據(jù)挖掘工程師工作的崗位職責(zé)03-15

    數(shù)據(jù)挖掘算法工程師崗位職責(zé)01-24

    數(shù)據(jù)挖掘工程師工作的崗位職責(zé)01-17

    數(shù)據(jù)挖掘分析崗位職責(zé)04-20

    數(shù)據(jù)挖掘工程師崗位職責(zé)19篇03-19

    數(shù)據(jù)挖掘工程師崗位職責(zé)15篇03-19

    數(shù)據(jù)挖掘工程師崗位職責(zé)精選15篇05-12

    主站蜘蛛池模板: 无码国模国产在线无码精品国产自在久国产| 亚洲欧洲美洲无码精品VA| 日韩精品免费一线在线观看| 精品国产欧美一区二区| 无码人妻精品中文字幕| 国产精品综合久成人| 精品免费tv久久久久久久| 精品人人妻人人澡人人爽人人| 蜜臀AV无码国产精品色午夜麻豆| 欧美精品亚洲精品日韩专区va| 国产99视频精品免视看7 | 国产精品久久久久影视不卡| 无码精品黑人一区二区三区| 午夜精品一区二区三区在线观看| 国产精品1024在线永久免费| 国产一精品一av一免费爽爽| 99精品国产丝袜在线拍国语| 精品免费人成视频app| 香蕉久久夜色精品升级完成| 亚洲А∨精品天堂在线 | 99re只有精品8中文| 国产日韩一区在线精品欧美玲| 国产乱人伦偷精品视频免下载 | 国产玖玖玖九九精品视频| 久久久久久久99精品免费观看| 99视频精品全部在线观看| 老司机性色福利精品视频| 亚洲精品国产成人片| 亚洲AV日韩精品久久久久久久| 亚洲精品无码久久不卡| 亚洲日韩精品一区二区三区| 亚洲精品夜夜夜妓女网| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 人人妻人人澡人人爽人人精品97 | 国产综合免费精品久久久| 国产精品永久久久久久久久久| 中文精品久久久久国产网址| 欧美黑人巨大精品| 国产精品 码ls字幕影视| 狠狠精品久久久无码中文字幕 | 亚洲精品国产精品乱码不99|