<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 數學三角函數公式

    時間:2022-10-27 01:17:01 學習總結 我要投稿
    • 相關推薦

    數學三角函數公式大全

      數學三角函數公式是貫穿學生整個學習生涯之中,那么關于數學三角函數公式有哪些呢?下面yjbys小編為大家精心整理的,歡迎大家閱讀與學習!

    數學三角函數公式大全

      銳角三角函數公式

      sin α=∠α的對邊 / 斜邊

      cos α=∠α的鄰邊 / 斜邊

      tan α=∠α的對邊 / ∠α的鄰邊

      cot α=∠α的鄰邊 / ∠α的對邊

      倍角公式

      Sin2A=2SinA?CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=(2tanA)/(1-tanA^2)

      (注:SinA^2 是sinA的平方 sin2(A) )

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a = tan a · tan(π/3+a)· tan(π/3-a)

      三倍角公式推導

      sin3a

      =sin(2a+a)

      =sin2acosa+cos2asina

      輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

      降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

      推導公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos^2α

      1-cos2α=2sin^2α

      1+sinα=(sinα/2+cosα/2)^2

      =2sina(1-sin²a)+(1-2sin²a)sina

      =3sina-4sin³a

      cos3a

      =cos(2a+a)

      =cos2acosa-sin2asina

      =(2cos²a-1)cosa-2(1-sin²a)cosa

      =4cos³a-3cosa

      sin3a=3sina-4sin³a

      =4sina(3/4-sin²a)

      =4sina[(√3/2)²-sin²a]

      =4sina(sin²60°-sin²a)

      =4sina(sin60°+sina)(sin60°-sina)

      =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

      =4sinasin(60°+a)sin(60°-a)

      cos3a=4cos³a-3cosa

      =4cosa(cos²a-3/4)

      =4cosa[cos²a-(√3/2)²]

      =4cosa(cos²a-cos²30°)

      =4cosa(cosa+cos30°)(cosa-cos30°)

      =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

      =-4cosasin(a+30°)sin(a-30°)

      =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

      =-4cosacos(60°-a)[-cos(60°+a)]

      =4cosacos(60°-a)cos(60°+a)

      上述兩式相比可得

      tan3a=tanatan(60°-a)tan(60°+a)

      半角公式

      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

      cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

      sin^2(a/2)=(1-cos(a))/2

      cos^2(a/2)=(1+cos(a))/2

      tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

      三角和

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      兩角和差

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      和差化積

      sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

      sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

      cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

      cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

      tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

      tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      積化和差

      sinαsinβ = [cos(α-β)-cos(α+β)] /2

      cosαcosβ = [cos(α+β)+cos(α-β)]/2

      sinαcosβ = [sin(α+β)+sin(α-β)]/2

      cosαsinβ = [sin(α+β)-sin(α-β)]/2

      誘導公式

      sin(-α) = -sinα

      cos(-α) = cosα

      tan (—a)=-tanα

      sin(π/2-α) = cosα

      cos(π/2-α) = sinα

      sin(π/2+α) = cosα

      cos(π/2+α) = -sinα

      sin(π-α) = sinα

      cos(π-α) = -cosα

      sin(π+α) = -sinα

      cos(π+α) = -cosα

      tanA= sinA/cosA

      tan(π/2+α)=-cotα

      tan(π/2-α)=cotα

      tan(π-α)=-tanα

      tan(π+α)=tanα

      誘導公式記背訣竅:奇變偶不變,符號看象限

      萬能公式

      sinα=2tan(α/2)/[1+tan^(α/2)]

      cosα=[1-tan^(α/2)]/1+tan^(α/2)]

      tanα=2tan(α/2)/[1-tan^(α/2)]

      其它公式

      (1)(sinα)^2+(cosα)^2=1

      (2)1+(tanα)^2=(secα)^2

      (3)1+(cotα)^2=(cscα)^2

      證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

      (4)對于任意非直角三角形,總有

      tanA+tanB+tanC=tanAtanBtanC

      證:

      A+B=π-C

      tan(A+B)=tan(π-C)

      (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

      整理可得

      tanA+tanB+tanC=tanAtanBtanC

      得證

      同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

      由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

      (5)cotAcotB+cotAcotC+cotBcotC=1

      (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

      (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

      (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

      (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

      cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

      sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

      tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    【數學三角函數公式】相關文章:

    三角函數公式大全07-21

    中考復習三角函數公式大全08-17

    小學數學公式總結02-08

    數學公式怎么記07-28

    小學數學公式大全01-23

    關于小升初數學公式08-10

    高中數學函數公式08-08

    小升初數學植樹問題公式總結12-23

    小升初數學學習應用公式08-13

    小升初數學單位換算公式匯總08-10

    主站蜘蛛池模板: 3D动漫精品一区二区三区| 精品福利一区二区三区免费视频| 无码欧精品亚洲日韩一区夜夜嗨| 久久精品免费一区二区三区| 久久久免费精品re6| 亚洲精品国产福利一二区| 国产精品99久久久久久www| 国产精品熟女一区二区| 亚洲精品无码午夜福利中文字幕| 精品一区二区三区高清免费观看 | 国产精品美女久久久久久2018| 欧美人与动牲交a欧美精品| 国产精品成人小电影在线观看| 2022精品天堂在线视频| 久久Av无码精品人妻系列| 无码人妻精品中文字幕免费| 亚洲AV日韩精品一区二区三区| 国产亚洲精品看片在线观看 | 国产99久久久国产精品~~牛| 99re这里只有精品6| 久久国产乱子伦免费精品| 影院无码人妻精品一区二区| 久草热8精品视频在线观看| 国产精品视频色视频| 99久久99久久精品国产片果冻| 国产精品一在线观看| 97精品国产91久久久久久| 国产欧美日韩精品丝袜高跟鞋| 日韩精品视频一区二区三区| 亚洲国产成人精品无码区在线观看| 最新国产精品无码| 亚洲国产第一站精品蜜芽| 狼色精品人妻在线视频| 精品黑人一区二区三区| 久久精品国产亚洲AV无码偷窥| 日产欧美国产日韩精品| 狼色精品人妻在线视频| 国产精品白浆在线观看免费| jizz国产精品网站| 国内精品久久国产大陆| 亚洲午夜精品一区二区|