<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 圖像的小波降噪

    時間:2024-07-19 05:25:53 數學畢業論文 我要投稿
    • 相關推薦

    圖像的小波降噪

    圖像的小波降噪
     

    摘要:圖像降噪1直是圖像處理領域1個研究得比較多的課題,也是1個熱點領域。其中小波變換降噪技術是被研究的最多1種技術,本文主要討論近幾年興起的值降噪技術。2維小波分析用于圖像降噪的步驟如下。
       (1)2維圖像信號的小波分解。在這1步,應當選擇合適的小波和恰當的分解層次(記為N),然后對待分析的2維圖像信號進行N層分解計算。
    (2)對分解后的高頻系數進行值量化。對于分解的每1層,選擇1個恰當的值,并對該層高頻系數進行軟值量化處理。
    (3)2維圖像信號的小波重構。同樣的,根據小波分解后的第N層的近似(低頻系數)和經過值量化處理后的各層細節(高頻系數),來計算2維信號的小波重構。
    還介紹了小波的數學基礎。如:小波變換,小波離散及框架,多分辨率分析和Mallat算法的信號分解和重建過程。
    圖像信號的小波降噪步驟和1維信號的降噪步驟完全相同,所不同的是,處理工具是用2維小波分析工具代替了1維小波分析工具。利用MATLAB 7 ,通過具體的例子來說明如何利用小波分析進行圖像降噪這個問題。
       關鍵字:圖像降噪;小波分解;值量化;小波重構


    Denoising Image by Using Wavelet
     

    Abstract:Image noise reduction has been an area of image processing more research topics, as well as a hot field. Wavelet transform noise suppression technology is a study of the most technical, In this paper, we mainly discusses the noise suppression technology of noise threshold which is a method rising in recent years. Wavelet analysis for the two-dimensional image noise reduction steps are as follows.
    (1) The wavelet decomposition of two-dimensional image. In this step, we should choose a suitable and appropriate wavelet decomposition levels (recorded as N), then decompose the 2-D analyzed image signal into N layer decomposition.
    (2) Threshold Quantified about the high-frequency coefficients decomposed. For each level of decomposition, we choice an appropriate threshold, and decide the quantity of the soft threshold for high-frequency coefficients of this layer.
    (3) The reconstruction of two-dimensional image signal by using wavelet. Similarly, according to the approximation of the Nth level (coefficient of low frequency) decomposed by using wavelet and the various details (coefficient of high-frequency) after quantified for the threshold values, calculate the wavelet reconstruction for the two-dimensional signal.
    The mathematical base of wavelet also is introduced, such as: wavelet’s transformation, discrete wavelet and framework, multi-resolution analysis, Mallat algorithm for the process of decomposition and reconstruction of a signal.
    The steps of noise reduction by using wavelet for image signal are identical to the steps of one-dimensional signal noise reduction. The only difference is the process tools. It is using two-dimensional wavelet analysis tools instead of one-dimensional wavelet analysis tools. By using MATLAB 7, through specific examples illustrate how to use wavelet analysis to denoise for an image.
    Keywords: image noise reduction ( denoise of a image); decomposition applying wavelet; quantization of a threshold、reconstruction by using wavelet

    【圖像的小波降噪】相關文章:

    基于小波閾值的信號降噪方法03-07

    基于離散小波變換和圖像融合的彩色圖像數字水印算法03-07

    基于嵌入式思想的小波圖像壓縮研究03-20

    基于提升小波構造在圖像去噪的應用研究03-07

    一種基于混沌和小波理論的圖像加密技術的實現03-07

    基于小波變換的諧波檢測法03-28

    小波轉換影像壓縮模式之研究03-18

    圖像時代的文學03-08

    小波變換在信息隱藏中的應用研究03-07

    主站蜘蛛池模板: 麻豆国产精品VA在线观看不卡| 欧美久久久久久午夜精品| 精品国产毛片一区二区无码 | 精品欧美一区二区在线观看 | 一本一本久久a久久综合精品蜜桃| 国产精品99久久久久久董美香 | 久久精品黄AA片一区二区三区| 国产精品无码无卡无需播放器| 99精品视频在线观看| 无码人妻精品中文字幕| 欧美激情视频精品一区二区| 99久久精品免费看国产| 国产午夜精品理论片久久影视| 精品人伦一区二区三区潘金莲| 亚洲欧美精品AAAAAA片| 四虎影院国产精品| 久久精品国产精品亚洲| 国产精品爽爽ⅴa在线观看| 欧美高清在线精品一区| 国产精品福利一区二区久久| 久久精品毛片免费观看| 欧美精品中文字幕亚洲专区| 亚洲精品无码精品mV在线观看| 无码8090精品久久一区| 日本精品久久久久久久久免费| 久久久国产精品| 国产一区二区三区精品视频| 国产精品午夜免费观看网站| 91精品视频观看| 亚洲欧美日韩精品永久在线| 久久精品成人免费网站| 欧美精品华人在线| 一区二区三区精品国产欧美| 国产精品影音先锋| 久久精品国产半推半就| 久久国产精品成人免费| 久久久久久久99精品免费观看| 久久精品无码一区二区三区| 日韩精品免费视频| 国产精品 综合 第五页| 国产啪亚洲国产精品无码|