<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 高中數(shù)學(xué)優(yōu)秀說課稿:正弦定理

    時間:2020-11-25 18:39:01 高中說課稿 我要投稿

    高中數(shù)學(xué)優(yōu)秀說課稿:正弦定理

      導(dǎo)語:弦定理(The Law of Sines)是三角學(xué)中的一個基本定理,它指出“在任意一個平面三角形中,各邊和它所對角的正弦值的比相等且等于外接圓的直徑”,即a/sinA = b/sinB =c/sinC = 2r=D(r為外接圓半徑,D為直徑)。以下是小編整理高中數(shù)學(xué)優(yōu)秀說課稿的資料,歡迎閱讀參考。

    高中數(shù)學(xué)優(yōu)秀說課稿:正弦定理

      一 教材分析

      本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

      根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

      認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

      能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

      情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

      教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

      教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

      二 教法

      根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的'認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點

      三 學(xué)法:

      指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

      四 教學(xué)過程

      第一:創(chuàng)設(shè)情景,大概用2分鐘

      第二:實踐探究,形成概念,大約用25分鐘

      第三:應(yīng)用概念,拓展反思,大約用13分鐘

     。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

      “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

     。ǘ┨綄ぬ乩,提出猜想

      1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

      2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

      3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

      在三角形中,角與所對的邊滿足關(guān)系

      這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

     。ㄈ┻壿嬐评,證明猜想

      1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

      2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

      3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

      (四)歸納總結(jié),簡單應(yīng)用

      1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

      2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

      3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

     。ㄎ澹┲v解例題,鞏固定理

      1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

      例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

      例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

     。┱n堂練習(xí),提高鞏固

      1.在△ABC中,已知下列條件,解三角形.

      (1)A=45°,C=30°,c=10cm

      (2)A=60°,B=45°,c=20cm

      2. 在△ABC中,已知下列條件,解三角形.

      (1)a=20cm,b=11cm,B=30°

      (2)c=54cm,b=39cm,C=115°

      學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

      (七)小結(jié)反思,提高認(rèn)識

      通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

      1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      2.它表述了三角形的邊與對角的正弦值的關(guān)系。

      3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

      (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

     。ò耍┤蝿(wù)后延,自主探究

      如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

      五 板書設(shè)計

      板書設(shè)計可以讓學(xué)生一目了然本節(jié)課所學(xué)的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

    【高中數(shù)學(xué)優(yōu)秀說課稿:正弦定理】相關(guān)文章:

    高中數(shù)學(xué)說課稿《正弦定理》范文11-29

    高中數(shù)學(xué)必修五《正弦定理》說課稿10-29

    高中數(shù)學(xué)說課稿《正弦定理》4篇07-13

    淺談數(shù)學(xué)正弦定理、余弦定理的應(yīng)用10-27

    初中數(shù)學(xué)《勾股定理》優(yōu)秀說課稿(通用5篇)05-29

    高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14

    最新高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14

    高中數(shù)學(xué)《簡單隨機抽樣》優(yōu)秀說課稿模板08-10

    高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿范文(通用6篇)07-11

    2017年教師資格面試《勾股定理的逆定理》說課稿解析08-10

    主站蜘蛛池模板: 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 久久精品国产99国产精品澳门| 日韩精品免费一线在线观看| 精品久久久久久综合日本| 亚洲精品国产精品乱码在线观看| 国产精品永久免费| 在线观看日韩精品| 国产午夜精品理论片久久影视| 精品调教CHINESEGAY| 亚洲欧美一级久久精品 | 欧美人与性动交α欧美精品| 久久精品中文字幕久久| 乱精品一区字幕二区| 亚洲精品线路一在线观看| 国产精品自在欧美一区| 亚洲国产综合91精品麻豆| 国产99视频精品免视看7| 久久久久人妻精品一区| 亚洲线精品一区二区三区| 无码精品蜜桃一区二区三区WW| 精品久久久久久久久久中文字幕| 88国产精品无码一区二区三区| 久久99精品国产麻豆宅宅| 999精品在线| 99久久国产热无码精品免费| 久久久久99精品成人片欧美| 中文字幕精品久久久久人妻| 欧美人与性动交α欧美精品成人色XXXX视频| 99精品国产成人一区二区| 亚洲精品在线观看视频| 亚洲国产精品一区| 国产精品 猎奇 另类视频| 国产原创精品 正在播放| 精品偷自拍另类在线观看丰满白嫩大屁股ass | 免费国产在线精品一区| 国产小呦泬泬99精品| 久久99精品久久久久久不卡| 欧美成人精品第一区二区三区| 青娱乐国产精品视频| 自拍偷在线精品自拍偷无码专区 | 亚洲av无码乱码国产精品|